Dissimilatory Fe(III) Reduction by the Marine Microorganism Desulfuromonas acetoxidans
نویسندگان
چکیده
منابع مشابه
First evidence for the presence of a hydrogenase in the sulfur-reducing bacterium Desulfuromonas acetoxidans.
Hydrogenases, which are ubiquitous in sulfate-reducing bacteria, were previously thought to be absent from Desulfuromonas acetoxidans. For the first time, a hydrogenase from the strict anaerobic sulfur-respiring bacterium D. acetoxidans, grown on ethanol-malate, was detected and enriched. To assay the role of the hydrogenase in the energetic metabolism of D. acetoxidans, we examined the reactiv...
متن کاملDissimilatory nitrate reduction by Propionibacterium acnes.
Propionibacterium acnes P13 was isolated from human feces. The bacterium produced a particulate nitrate reductase and a soluble nitrite reductase when grown with nitrate or nitrite. Reduced viologen dyes were the preferred electron donors for both enzymes. Nitrous oxide reductase was never detected. Specific growth rates were increased by nitrate during growth in batch culture. Culture pH stron...
متن کاملDissimilatory metal reduction.
Microorganisms can enzymatically reduce a variety of metals in metabolic processes that are not related to metal assimilation. Some microorganisms can conserve energy to support growth by coupling the oxidation of simple organic acids and alcohols, H2, or aromatic compounds to the reduction of Fe(III) or Mn(IV). This dissimilatory Fe(III) and Mn(IV) reduction influences the organic as well as t...
متن کاملMechanism of H2S Oxidation by the Dissimilatory Perchlorate-Reducing Microorganism Azospira suillum PS
The genetic and biochemical basis of perchlorate-dependent H2S oxidation (PSOX) was investigated in the dissimilatory perchlorate-reducing microorganism (DPRM) Azospira suillum PS (PS). Previously, it was shown that all known DPRMs innately oxidize H2S, producing elemental sulfur (So). Although the process involving PSOX is thermodynamically favorable (ΔG°' = -206 kJ ⋅ mol-1 H2S), the underlyin...
متن کاملPreferential reduction of FeIII over fumarate by Geobacter sulfurreducens.
The presence of Fe(III), but not that of Fe(II), resulted in ca. 20-fold-lower levels of mRNA for fumarate reductase, inhibiting fumarate reduction and favoring utilization of fumarate as an electron donor in chemostat cultures of Geobacter sulfurreducens, despite the fact that growth yield with fumarate was 3-fold higher than with Fe(III).
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Applied and Environmental Microbiology
سال: 1993
ISSN: 0099-2240,1098-5336
DOI: 10.1128/aem.59.3.734-742.1993